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Abstract We consider a family of random line tessellations of the Euclidean plane intro-
duced in a more formal context by Hug and Schneider (Geom. Funct. Anal. 17:156, 2007)
and described by a parameter α ≥ 1. For α = 1 the zero-cell (that is, the cell containing the
origin) coincides with the Crofton cell of a Poisson line tessellation, and for α = 2 it coin-
cides with the typical Poisson-Voronoi cell. Let pn(α) be the probability for the zero-cell to
have n sides. We construct the asymptotic expansion of logpn(α) up to terms that vanish
as n → ∞. Our methods are nonrigorous but of the kind commonly accepted in theoretical
physics as leading to exact results. In the large-n limit the cell is shown to become circular.
The circle is centered at the origin when α > 1, but gets delocalized for the Crofton cell,
α = 1, which is a singular point of the parameter range. The large-n expansion of logpn(1)

is therefore different from that of the general case and we show how to carry it out. As a
corollary we obtain the analogous expansion for the typical n-sided cell of a Poisson line
tessellation.

Keywords Random line tessellations · Crofton cell · Exact results

1 Introduction

1.1 Poisson-Voronoi and Poisson Line Tessellations

A Voronoi tessellation of R
2 is a partitioning of the plane into cells constructed around ‘point

particles’ in such a way that each point of space is in the cell of the particle to which it is
closest. When the point particle distribution is uniformly random (or, in mathematical terms,
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Fig. 1 Example of a line
tessellation of the plane. The
projection of the origin onto line
a is denoted Ra ; this projected
point fully determines a. The cell
surrounding the origin (the
‘zero-cell’) has been shaded

when it corresponds to a homogeneous Poisson point process), the resulting partition is said
to be a Poisson-Voronoi tessellation. It is one of the simplest mathematical models of natu-
rally occurring planar cellular structures. Because of the great variety of their applications,
the statistics of Poisson-Voronoi cells has been studied in many different areas of science.
References may be found in the encyclopedic review by Okabe et al. [1].

A different way of partitioning the plane into cells is by means of intersecting straight
lines, as in Fig. 1. When these have a uniform distribution (or, in mathematical terms, when
they correspond to a homogeneous Poisson line process), we refer to the partition as a Pois-
son line tessellation. The Poisson-Voronoi tessellation and the Poisson line tessellation are
both statistically invariant under translations and rotations in the plane. For both, the cells
are convex polygons.

An early application of the Poisson line tessellation occurs in work by Goudsmit [2],
carried out at the suggestion of Niels Bohr. The question in that paper arose from cloud
chamber experiments: when three lines seemingly originate from the same point, then what
is the probability that they do not result from the same event? Hence the problem became to
calculate the probability for three independent lines to nearly pass through the same point,
or, put differently, for a typical triangular cell to have an area less than A in the limit of very
small A. Poisson line tessellations have since interested mathematicians with important con-
tributions due to, in particular, Miles [3–5], Matheron [6], Kovalenko [7, 8], Goldman [9],
and Hug, Reitzner and Schneider [10].

The cell that contains the origin is generally called the ‘zero-cell’. In the Poisson line
tessellation it carries the special name of ‘Crofton cell’, in reference to Crofton’s formula
in integral geometry [11]. Since the origin falls in a cell of area A with a probability pro-
portional to A, the Crofton cell is not typical but more likely larger-than-typical. In mathe-
matical terms, the density of the typical cell differs from that of the Crofton cell by a factor
A/〈A〉typ, where 〈A〉typ is the average typical-cell area. We will distinguish quantities per-
taining to the typical cell of a Poisson line tessellation (as opposed to the Crofton cell) by
an extra superscript ‘typ’.

1.2 Cell Sidedness

The cell property most studied is the sidedness probability pn, that is, the probability for
the cell to have n sides. Other quantities of interest have included the averages, moments,
and correlations of n, the cell area and the cell perimeter, as well as the distribution of the
angles between the perimeter segments. The statistical properties of an n-sided cell may be
expressed analytically as 2n-fold integrals on the planar coordinates of the point particles
(for the Voronoi tessellation) or of the lines (for the line tessellation) defining that cell.
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However, only few of these integrals can be evaluated exactly. In particular the calculation
of the fraction pn has so far been impossible for general n, whether for the Poisson-Voronoi
or for the Poisson line tessellation.

We briefly recall some known results. In a Poisson line tessellation the typical cell has an
average number of sides 〈n〉typ = 4. The sidedness p

typ
n peaks at n = 4. Miles [3] obtained the

exact value p
typ
3 = 2−π2/6 = 0.35506 . . . and Tanner [12] showed that p

typ
4 = π2 log 2− 1

3 −
7

36 π2 − 7
2ζ(3) = 0.38146 . . . . Numerical values for p

typ
n based on Monte Carlo simulation

were given by Crain and Miles [13], by George [14], and recently by Michel and Paroux
[15] (who compare their results to the earlier ones), for sidednesses not exceeding n = 12.

For the Crofton cell, by contrast, Matheron [6] showed that the average sidedness is
〈n〉 = π2/2 = 4.9348 . . . . The distribution pn peaks at n = 5. Miles [5] obtained the only
known exact result, namely p3 = (25 − 36 log 2)π2/6 = 0.076820 . . . . Numerical values
for pn were given by Calka [16] for n = 3,4, . . . ,9 and by Michel and Paroux [15] for
n = 3,4, . . . ,11.

The Poisson-Voronoi cell has an average sidedness of 〈n〉 = 6. Its sidedness distribution
pn peaks at n = 6. Although no exact results are known for any of the pn, it has recently
been possible [17–19] to obtain the asymptotic expansion of pn in the limit of asymptotically
large n. The expansion was shown to have implications for the asymptotic cell shape, as well
as for the finite n behavior [20] and for correlations between neighboring cells [21].

A natural question to ask, then, is whether a similar asymptotic analysis of pn (for the
Crofton cell) and of p

typ
n (for the typical cell) can be carried out for the Poisson line tes-

sellation. Now it was observed by Hug and Schneider [22] that the Crofton cell and the
typical Poisson-Voronoi cell are particular instances of a more general family of zero-cell
problems, dependent on a parameter α. Hence our interest in the Poisson line tessellation
leads us quite naturally to study here this full one-parameter family, which we will define in
the next subsection.

1.3 A Family of Tessellations

Let a be a line in the plane and Ra the projection of the origin onto that line, as shown in
Fig. 1; then a is uniquely specified by Ra . In the Poisson line tessellation the Ra form a
Poisson point process with a density proportional to 1/Ra . This tessellation is statistically
invariant under translations. In fact, the intersections of the lines a of the tessellation with
an arbitrary additional line constitute a one-dimensional Poisson process; and the associated
angles of intersection θa are mutually independent and have the common probability density
1
2 sin θ , where 0 < θ < π . In this work we will consider a more general tessellation that was
introduced by Hug and Schneider [22] and depends on a parameter α. The projection vectors
of this tessellation are distributed with a density

ρ(R) = cst × Rα−2, α ≥ 1. (1.1)

For generic α the distribution (1.1) has central symmetry around the origin but the corre-
sponding tessellation is not translationally invariant. The zero-cell is therefore unlike any
other cell. For α = 1 we recover the Poisson line tessellation. For α = 2 the zero-cell cor-
responding to (1.1) is identical to the typical cell of the Poisson-Voronoi tessellation, which
is easily seen as follows. For α = 2 we have ρ(R) = cst, so that the projections themselves
have a uniform density. Then, for a given configuration of projections {Ra}, we may imagine
point particles located at the set of positions {2Ra}, as well as an extra point particle placed
in the origin. These particles constitute a Poisson point process in the plane. The Voronoi
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cell of the particle in the origin is then equal in distribution to the typical Poisson-Voronoi
cell [23], while also being identical to the zero-cell of the α = 2 line tessellation.

Although not at present of any known application in physics, it is instructive to study the
entire α dependent family of problems in order to see how it links together the two cases of
greatest renown, the Crofton cell for α = 1 and the typical Poisson-Voronoi cell for α = 2.

1.4 Results

All the results presented here are obtained by methods current in statistical physics. In par-
ticular, our expansion in negative powers of n of the probability pn(α) defined below is not
mathematically rigorous; but it is of a kind that in statistical mechanics commonly leads to
exact results.

For the α dependent tessellation defined by (1.1) we construct the large-n expansion of
the probability pn(α) that the zero-cell is n-sided. In Sect. 2 we consider the parameter range
α > 1, for which our work is a rather straightforward extension of earlier work [18] on the
Voronoi cell, α = 2. The final result for pn(α) is best expressed with the aid of the auxiliary
quantity p(0)

n (α) given by

p(0)
n (α) = 2(4π2α)n−1

(2n)! , α ≥ 1. (1.2)

In Sect. 2 we derive that when n → ∞,

pn(α) � C(α)p(0)
n (α), α > 1, (1.3)

where the symbol � is defined by the classical equivalence (un � vn if and only if un/vn→1
for n → ∞), and where the prefactor C(α) is given by

C(α) =
∞∏

q=1

(
1 − 3 − α

q2
+ α2

q4

)−1

, α > 1. (1.4)

Equivalently, we have that when n → ∞,

logpn(α) = −2n logn + n log(π2e2α) − 1

2
logn + log

(
C(α)

4π5/2α

)
+ o(1). (1.5)

For α = 2 this result reduces to the known expressions [17, 18] of the Voronoi problem.
The study for α > 1 shows, however, that the Crofton cell corresponds to a singular point at
the lower limit, α = 1, of the parameter range studied here. We have limα→1 C(α) = ∞, the
divergence being due to the factor of index q = 1 in (1.4). This signals the breakdown of the
method of Sect. 2 when applied to the Crofton cell, α = 1.

In Sect. 3 we develop the modified approach necessary to find the sidedness probability
pn(1) of the Crofton cell, as well as its other statistical properties. The appropriate result for
the Crofton cell derived there is that for n → ∞

pn(1) � 2

3
np(0)

n (1), (1.6)

or equivalently

logpn(1) = −2n logn + n log(π2e2) + 1

2
logn − log(6π5/2) + o(1). (1.7)
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As a corollary we find in Sect. 4 that the typical cell in a Poisson line tessellation has a
sidedness probability p

typ
n (1) given by

ptyp
n (1) � 8

3
n−1p(0)

n (1), n → ∞. (1.8)

The ratio pn(1)/p
typ
n (1) � 1

4n2 is that of the area of the n-sided Crofton cell to the area of
the average cell in a Poisson line tessellation.

The derivation of these asymptotic series for the pn(α) is based on a perturbation expan-
sion around the regular n-sided polygon centered at the origin. The prefactor C(α) repre-
sents the partition function of the elastic deformations of this n-gon, the ‘elasticity’ being of
purely entropic origin. The deformations with q = 1 are, at least to linear order, translations
of the cell with respect to the origin. As is briefly discussed in Sect. 5.1, the expansion actu-
ally leads to the full probability density functional, valid in the limit n → ∞, of the zero-cell
perimeter.

The possibility of constructing an asymptotic series by expanding around the regular n-
gon implies that when n → ∞, the shape of the n-sided cell tends with probability one to
a circle (which we show to be of radius Rc = (nα/2π)1/α). Miles [24] was the first to state
this property for the Crofton cell and to validate it by heuristic methods.

The approach to circularity in the limit of large sidedness n as studied here resembles,
but is nevertheless distinct from, many mathematical results derived in the limit of large cell
size, with the size being defined in various ways. These two limits correspond to ensembles
that are fully disjoint.

The conjecture originally formulated by Kendall in the early forties says that the Crofton
cell becomes circular when its area goes to infinity. Calka and Schreiber [25] proved the
approach to a circle when the radius of the largest possible inscribed disk tends to infinity.
Hug, Reitzner and Schneider [10] showed a generalized version of Kendall’s conjecture in
any dimension d when the k-dimensional volume of the cell, in the sense of Hausdorff (2 ≤
k ≤ d), goes to infinity. Hug and Schneider [22] considered the zero-cell of a general class
of d-dimensional tessellations which includes the two-dimensional family studied in this
work, but also includes cells (‘polytopes’) resulting from more general direction dependent
Poisson hyperplane processes. These authors prove the approach to a limit shape when the
size of the cell, as measured in any of a variety of ways, tends to infinity.

The present work, in summary, considers a special subclass of the systems introduced in
reference [22] and distinguishes itself from that work in that it takes a different large-cell
limit and leads to an explicit expansion for the sidedness probability.

2 A One-Parameter Family of Line Tessellations

We consider a set of lines defined by their projections R that are distributed in the plane R
2

with density

ρ(R) = λRα−2, R > 0, α ≥ 1. (2.1)

Here λ has the dimension of an inverse length to the power α and will be kept only as a check
on the dimensionalities of our formulas. The expected number N (α,L) of projections in a
disk of radius L centered at the origin is equal to

N (α,L) =
∫

R<L

dRρ(R) = 2πλLα

α
. (2.2)
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In order to have a well-defined problem in the infinite plane we first consider this disk
occupied by N projections distributed independently according to the probability density

P (R) = α

2πL2

(
L

R

)2−α

, 0 < R < L. (2.3)

At some suitable point below we will take the limit L,N → ∞ with N = N (α,L).

2.1 Sidedness Probability pn(α) of the Zero-Cell

Each projection Ra , for a = 1,2, . . . ,N , has a line a associated with it. Then pn is the
probability that n lines from among the N contribute a segment to the perimeter of the zero-
cell (that is, the cell enclosing the origin), and that the other N − n lines do not contribute
segments. We will labeling these two groups of lines by a = 1,2, . . . , n and a = n + 1, n +
2, . . . ,N , respectively, and abbreviate R[n] = {R1, . . . ,Rn}. Omitting explicit indication of
the dependence of pn(α) on N and L, we can write

pn(α) =
(

N

n

)∫

R1<L

dR1P (R1) · · ·
∫

Rn<L

dRnP (Rn)χ(R[n])

× exp
( −Aα(R[n])

)
, (2.4)

where χ selects the R[n] that define Crofton cells:

χ(R[n]) =
{

1 if R[n] represents an n-sided cell enclosing the origin,

0 in all other cases; (2.5)

and exp(−Aα(R[n])) is the probability that the other N −n lines do not intersect the perime-
ter of this cell. We will employ polar coordinates and write Ra = (Ra,	a). Upon using (2.3)
for P and partially taking the limit N → ∞ we can rewrite (2.4) as

pn(α) = λn

n!
∫ 2π

0
d	1 . . .d	n

∫ ∞

0
dR1R

α−1
1 . . .dRnR

α−1
n χ(R[n])e−Aα(R[n]). (2.6)

In order to make progress we must now render Aα and χ explicit.

2.1.1 Expression for Aα

Since the N − n lines are independent, exp(−Aα) is an (N − n)th power and we need
to consider only a single line. We refer now to Fig. 2. For a half-line originating in the
origin O and having an arbitrary angular direction 	, let 
(	) be the tangent to the cell
that intersects this half-line perpendicularly. Generically this tangent will have only a single
vertex in common with the perimeter. The distance h(	) from the origin to 
(	) is called
the ‘support function’ [26] of 	. The no-intersection condition can now be restated as the
condition that there be no projection Ra (a = n+1, . . . ,N ) in the sector of width �	 within
a distance h(	) of the origin. The probability w(	)�	 for a given Ra to be in this sector is

w(	)�	 =
∫ 	+�	

	

d	′
∫ h(	′)

0
dRRP(R)

= �	

2π

(h(	)

L

)α +O(�	2), (2.7)
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Fig. 2 Figure illustrating the
definition of the support function
h(	) given in Sect. 2.1.1

where we used (2.3). The probability exp(−Aα) for the line through Ra not to intersect the
cell is equal to one minus the integral on all 	 of expression (2.7). Upon raising this result to
the (N − n)th power and taking the limit N → ∞ we obtain the desired weight exp(−Aα)

with Aα given by

Aα(R[n]) = λ

α

∫ 2π

0
d	hα(	). (2.8)

Equations (2.6) and (2.8) will be the starting point for all that follows in this work. They have
been obtained here by methods current in statistical mechanics; however, these equations,
as well as generalizations of them, may be derived rigorously from Slivnyak’s formula by
the method of reference [16]. Formula (2.6) was originally included in [27]. Whenever (2.8)
appears below, we will set λ = 1, which entails no loss of generality.

It is easy to find the explicit expression for the support function h(	), which follows
directly from its above definition. By a permutation of the labels of the polar angles and a
rotation of the coordinate system one can always arrange things such that 0 = 	0 < 	1 <

· · · < 	n−1 < 2π , where by convention 	n ≡ 	0. We define the Sm = (Sm,�m) as the con-
secutive vertices of the cell in polar coordinate representation; in particular, Sm is the inter-
section of the (m − 1)-th with the m-th line (see Fig. 3). After that a little algebra yields the
two alternative expressions

h(	) = [
sin(	m − 	m−1)

]−1[
Rm−1 sin(	m − 	) + Rm sin(	 − 	m−1)

]

= Sm cos(�m − 	), 	m−1 < 	 < 	m, m = 1, . . . , n. (2.9)

When one substitutes (2.9) in (2.8), a 	 integral appears which can be carried out in closed
form only for integer α.

2.1.2 Angular Variables

Other angles essential to our study may be defined in terms of the 	m and �m and are shown
in Fig. 3. First of all,

ξm = 	m − 	m−1,
(2.10)

ηm = �m+1 − �m, m = 1,2, . . . , n,

with the conventions 	n = 	0 + 2π and �n = �0 + 2π . The ξm are the angles between two
consecutive projection vectors and the ηm those between two consecutive vertex vectors;



634 H.J. Hilhorst, P. Calka

Fig. 3 Heavy line segments: the
perimeter of the zero-cell in a
random line tessellation of the
plane. The Rm are the
projections of the origin onto the
lines containing these perimeter
segments. The Sm are the cell
vertices. The figure shows the
angles ξm, ηm, βm, and γm

defined by (2.10) and (2.11)

n-periodicity in their index m will be understood. For fixed sets of angles ξ = {ξm} and
η = {ηm} one may still jointly rotate the vertex vectors Sm with respect to the projection
vectors Rm, as this modifies only the relative angles βm and γm (see Fig. 3) between the two
sets. We may select any one of these relative angles and call it ‘the’ angle of rotation, since it
will determine all others. We will select β1 for this purpose; when it is given, the remaining
βm and γm can be expressed as

βm = β1 −
m−1∑


=1

(ξ
 − η
), m = 2, . . . , n,

(2.11)

γm = −β1 +
m−1∑


=1

(ξ
 − η
) + ξm, m = 1, . . . , n.

We now show that β1 cannot be arbitrary but is in fact determined itself by the two sets ξ

and η. As is clear from Fig. 3, one can relate Rm to Rm−1 by Rm = (cosγm/ cosβm)Rm−1.
Upon iterating n times starting from any of the Rm, periodicity imposes that we recover the
initial value. Let us define G by

e2πG(ξ,η;β1) =
n∏

m=1

cosγm

cosβm

, (2.12)

where the notation expresses that the 2n − 1 variables γ1, β2, γ3, . . . , βn on the right hand
side should be viewed as the functions (2.11) of the ξm and ηm and of the ‘angle of rota-
tion’ β1. Because of periodicity β1 must then have the special value β1 = β∗(ξ, η) that is the
solution of

G(ξ,η;β∗) = 0. (2.13)

It was shown in reference [20] that the solution of (2.13) is unique.
Finally we remark that whereas the ξm and ηm must be positive, the βm and γm may have

either sign.
In terms of the angles defined above, equations (2.8)–(2.9) can be made fully explicit

in those cases where it is possible to carry out the integral on 	. One such case occurs for



Random Line Tessellations of the Plane: Statistical Properties 635

α = 1. By Cauchy’s integral formula we have A1 = P , where P is the cell perimeter and
has the two alternative expressions

P =
n∑

m=1

Rm

[
tan

1

2
ξm + tan

1

2
ξm+1

]

=
n∑

m=1

Rm[tanγm + tanβm+1]. (2.14)

For α = 2 we have that A2 is the area of the fundamental domain of the Voronoi cell, that is,
of the union of n disks of radii Sm centered at the vertices Sm. Explicit expressions for A2

may be found in references [16–18, 20, 28].

2.1.3 Expression for the Indicator Function χ

Having defined the angular variables we return now to the conditions imposed on the domain
of integration in (2.6) by the indicator χ . In terms of the angles βm and γm these conditions
simplify greatly and take the explicit form [17, 18]

−π

2
< βm,γm <

π

2
, βm + γm > 0, γm + βm+1 > 0, (2.15)

where m = 1,2, . . . , n and n-periodicity in m is understood. As could be expected, this
condition depends only on the angles of the problem and not on the length scale.

2.2 Transforming the Expression for pn(α)

Equation (2.6) represents pn(α) as a 2n-fold integral which we will transform in successive
steps to a form manageable in the large n limit. An important variable is the ‘average radius’
Rav defined by

Rav = 1

n

n∑

m=1

Rm. (2.16)

We now pass from the set of variables of integration {Rm,	m} used in (2.6) to a new set of
variables consisting of the radial scale Rav and the set of angles {ξm,ηm}. Although the βm

and γm may be entirely expressed in terms of the ξ
 and η
, they constitute a useful set of
auxiliary variables.

Convenient shorthand notation will be
∫

ξ,η

≡
∫ 2π

0
dξ1ξ1 . . .dξnξn

∫ 2π

0
dη1 . . .dηnδ

(
n∑

m=1

ξm − 2π

)
δ

(
n∑

m=1

ηm − 2π

)
(2.17)

and

� ≡
n∏

m=1

θ

(
π

2
− βm

) n∏

m=1

θ

(
π

2
− γm

)
, (2.18)

where θ is the Heaviside unit step function. After doing the algebra of the transformation of
variables [18, 20] we find that (2.6) may be recast in the form

pn(α) = 1

n

∫

ξ,η

G′(ξ, η;β∗)−1

[
n∏

m=1

ρα
mTmξ−1

m

]
�

∫ ∞

0
dRavR

αn−1
av e−Aα , (2.19)
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in which G′ denotes the derivative of G(ξ,η;β1) with respect to β1; we have abbreviated
Tm ≡ sin ξm/ cos2 βm; and the 2n ratios ρm ≡ Rm/Rav may be expressed in terms of the
angles by means of the 2n relations

ρm = (cosγm/ cosβm)ρm−1 (m = 2, . . . , n), n−1
n∑

m=1

ρm = 1, (2.20)

of which the last one follows from (2.16).
Clearly Aα can be written as Rα

av times a function of the angles. We will set

Aα = 2π

α
Rα

av(1 + n−1V ), (2.21)

where 2πα−1Rα
av is the value that Aα takes for a circular cell of radius Rav and in which V

depends exclusively on the angles. The notation in (2.21) is meant to suggest that n−1V is of
order n−1 as n → ∞, but we will rely on that only later. Integrating (2.19) on Rav converts
it into

pn(α) = (n − 1)!
2πn

( α

2π

)n−1
∫

ξ,η

�e−V(α), α ≥ 1, (2.22)

where

e−V(α) = G′(ξ, η;β∗)−1

[
n∏

m=1

ρα
mTmξ−1

m

]
(1 + n−1V )−n. (2.23)

The integrations that remain on the right hand side of (2.22) bear only on the angles ξm and
ηm, that is, on the shape of the cell without regard to its radial dimension. We still remark
that the factors ξ−1

m in the product on m in (2.23) compensate the factors ξm incorporated in
the definition (2.17) of

∫
ξ,η

. Their purpose is to ensure that V(α) remains finite when any of
the ξm tends to zero.

We finally write (2.22) as

pn(α) = p(0)
n (α)〈�e−V(α)〉, α ≥ 1, (2.24)

where for any function X of the angular variables we define

〈X〉 =
∫

ξ,η
X

∫
ξ,η

1
. (2.25)

Straightforward calculation yields

p(0)
n (α) = (n − 1)!

2πn

( α

2π

)n−1
∫

ξ,η

1

= 2
(4π2α)n−1

(2n)! , α ≥ 1, (2.26)

which is (1.2) of the introduction. Equations (2.24) and (2.26) represent an important step
forward with respect to the initial expressions (2.6) and (2.8). However, the hard part of
the problem remains, namely to determine the n dependence of 〈�e−V(α)〉 in (2.24). In
Sects. 2.4–2.5 we will show that for α > 1 one has limn→∞〈�e−V(α)〉 = C(α), where C(α)



Random Line Tessellations of the Plane: Statistical Properties 637

is a finite numerical constant. The special case of the Crofton cell, α = 1, will not be cov-
ered by the arguments of those sections and must be dealt with separately; we will do so in
Sect. 3.

2.3 Scaling of the Average Radius Rav

The inner integrand of (2.19), when combined with (2.21), shows that the average radius
Rav has a probability distribution

Pav(Rav) = cst × Rαn−1
av e−(2π/α)Rα

av(1+n−1V ), α ≥ 1, (2.27)

which depends on the cell shape through V . The notation is meant to suggest that n−1V is
negligible when n → ∞, and this will be confirmed below. Elementary analysis then shows
that for n → ∞ the distribution Pav(Rav) has a peak at Rc whose width is σc, where

Rc =
(nα

2π

) 1
α
, σc = 1

α

( α

2π

) 1
α
n

1
α − 1

2 . (2.28)

Hence the typical deviation of Rav from Rc is a factor n
1
2 smaller than Rc itself, for all α ≥ 1.

2.4 Large-n Expansion of V(α)

The regular n-sided polygon is a point of high symmetry in phase space where we expect the
integrand of

∫
ξ,η

in (2.22) to be stationary. This point has ξm = ηm = 2πn−1 and βm = γm =
πn−1 for all m = 1,2, . . . , n. Coordinates that describe the deviations from this symmetric
state are defined by

δξm = ξm − 2πn−1, δηm = ηm − 2πn−1 (2.29)

and their suitably scaled Fourier transforms

X̂q = n
1
2

2π

n∑

m=1

e2π iqm/nδξm, Ŷq = n
1
2

2π

n∑

m=1

e2π iqm/nδηm, (2.30)

where q = ±1,±2, . . . . It will appear that the integrations required for the calculation of
the average in (2.24) can be done explicitly once expressed in terms of the variables of
integration X̂q and Ŷq .

2.4.1 Scaling with n

We will treat V perturbatively in inverse powers of n. An initial hypothesis on the smallness
of the angles with n is suggested by the scaling that prevails when in (2.22) we set V = 0.
That yields

δξm, δηm ∼ n−1, (2.31)

where the symbol ∼ indicates the scaling with n in the large-n limit. Using relations (2.11)
and (2.20) between the angles as well as the fact that the ξm and ηm are to leading order
independent, we find from (2.31) that furthermore

βm,γm ∼ n− 1
2 , τm ≡ ρm − 1 ∼ n− 1

2 ; (2.32)
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and using (2.30) we find from (2.29) that

X̂q ∼ n0, Ŷq ∼ n0. (2.33)

If and when needed, the βm, γm, and τm and their Fourier transforms can be expressed in
terms of the X̂q and Ŷq .

The initial hypothesis now holds that the above scalings remain valid in the presence of
the nonzero V defined by (2.23). We will consider the validity of this hypothesis confirmed
when at the end of this section we will find that in the limit n → ∞ it produces a finite
leading order result for 〈exp(−V)〉.

We end these considerations with two remarks. First, the present scalings are identical
to those encountered in the study of the large n-sided Voronoi cell. How to handle them
technically, in particular when sums of ∼n terms appear, is nontrivial and has been discussed
in detail in reference [18], Sects. 5 and 6. Secondly, we note that the smallness of the τm with
n implies that all Rm are close to the average Rav, which in turn together with the smallness
of the ξm implies that for n → ∞ the perimeter approaches a circle.

2.4.2 The Expansion

We defined V recursively by (2.23), (2.21), and (2.8) in terms of V , Aα , and h(	). Since
h(	) defined by (2.9) is piecewise analytic on n successive angular intervals, when substi-
tuted in (2.8) it gives rise to a sum of n terms. In the mth term, that is, for 	m−1 < 	 < 	m,
we set Sm = Rm/ cosγm and pass to the variable of integration θ ≡ 	 − �m. Then (2.8)
becomes

Aα = 1

α

n∑

m=1

(
Rm

cosγm

)α ∫ γm

−βm

dθ(cos θ)α

= Rα
av

α

n∑

m=1

(
1 + τm

1 − 1
2γ 2

m + · · ·
)α ∫ γm

−βm

dθ

(
1 − 1

2
θ2 + · · ·

)α

. (2.34)

Here the dots indicate terms of higher order in the angles. We may expand the αth powers
in (2.34) and do the θ integral. Using the sum rule

∑n

m=1(βm + γm) = 2π we find that the
leading order result for Aα is (2π/α)Rα

av. Comparison to (2.21) shows that the higher order
terms in (2.34) determine V . Pursuing the expansion to higher orders we find

2π

n
V = α

n∑

m=1

τm(γm + βm) + 1

2
α(α − 1)

n∑

m=1

τ 2
m(γm + βm)

+ 1

6
α(2γ 3

m + 3γ 2
mβm − β3

m) + · · · . (2.35)

Equation (2.35) for V may be substituted in (2.23). The other factors in (2.23) may be
expanded similarly, and together this leads to the expansion of V. The order in n of each
term in the expansion may be estimated in the way outlined in Sect. 2.4.1. It then appears
that V(α) allows for an expansion in powers of n− 1

2 ,

V(α) = V1(α) +O(n− 1
2 ), (2.36)
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of which the leading term V1(α) is a quadratic form in the angles that is of order n0. Upon
expressing all variables in terms of the X̂q and Ŷq one obtains

V1(α) =
∑

q =0

(X̂q, Ŷq)·Vq ·(X̂−q, Ŷ−q)
T, (2.37)

where the superscript T indicates transposition and where Vq is the symmetric matrix

Vq =
(

Aq −Aq + 1
2 Bq

−Aq + 1
2Bq Aq − Bq

)
(2.38)

with

Aq = α − 1

q2
+ α2

2q4
, Bq = α

q2
. (2.39)

Equations (2.36)–(2.39) complete the large-n expansion of V(α). They are valid for all
α ≥ 1.

2.5 Large-n Expansion of pn(α)

The large-n expansion of pn(α) is based on the one of V given above. Upon substituting
(2.36)–(2.37) in (2.24) and using that � may be replaced with unity up to corrections that
vanish exponentially for large n, we get

pn(α) � p(0)
n (α)〈e−V1(α)〉 (2.40)

with V1 given by (2.37).
Although (2.37) is a quadratic form, the X̂q and Ŷq are not Gaussian distributed. Nev-

ertheless, it was shown in reference [18] that to leading order in n−1/2 the average 〈. . .〉
in (2.40) may be carried out as though the X̂q and Ŷq were Gaussian, with a probability
distribution

NG exp

(
−

∑

q =0

(X̂q, Ŷq)·E−1 ·(X̂−q, Ŷ−q)
T

)
, (2.41)

where NG is the appropriate normalization constant and where we introduced the 2 × 2
diagonal matrix E = diag{1,2}. This fact is partly confirmed by the result of convergence in
distribution and asymptotic mutual independence of the Fourier coefficients of i.i.d. random
variables [29, 30]. The Gaussian integrals are easily done. Still letting 1 represent the 2 × 2
unit matrix one finds that

pn(α) � C(α)p(0)
n (α), C(α) =

∞∏

q=1

�−1
q (α), α > 1, (2.42)

where we abbreviated for all α ≥ 1

�q(α) = det(1 + VqE)

= 1 + 3Aq − 2Bq − 1

2
B2

q

= 1 − (3 − α)q−2 + α2q−4. (2.43)
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Equations (2.42) and (2.43) are the main result of this section. It is easily verified that
�q(α) > 0 for all α ≥ 1 and q = 1,2, . . . with the only exception that �1(1) = 0. This
is the reason why the substitution that led to (2.40) must be restricted to α > 1; for the
Crofton point α = 1 the resulting Gaussian integration would diverge. Hence the method of
this section leaves the Crofton problem unsolved. In the following section we will develop
a modified method suitable for the Crofton cell.

3 The Crofton Cell: α = 1

3.1 Centering Condition

For α = 1 the expansion of 〈�e−V(α)〉 around a regular n-gon leads to a diverging integral
and hence cannot be used for finding pn(1). This divergence, due to the vanishing of �q(1)

with q = 1, may be tracked down to the origin being located with the same probability in
any point of the cell; hence the problem has a ‘zero mode’ due to translational invariance.
Indeed, for q = ±1 elastic deformations of a circle are actually translations.

This analysis also points the way out of the difficulty. In the integrals one should count
a Crofton cell only when, under a suitable definition, it is ‘centered’ around the origin,
and then give it a weight proportional to its area in order to simultaneously account for all
noncentered cells that may be obtained from it by translation. The ‘centering condition’ that
we adopt is that the q = ±1 Fourier components of Rm vanish, that is,

R̂1 ≡ 1

n

n∑

m=1

e2π im/nRm = 0. (3.1)

This is a constraint only on the vector lengths Rm, irrespective of the angles 	m.
The following remark establishes one more link with the mathematical literature. There, a

function A2(R[n]; r) appears defined as Aα(R[n]) with α = 2 in (2.8) except that the support
function h(	) with respect to the origin O is replaced by the support function h(	; r) with
respect to r. The function A2(R[n]; r) is commonly used to calculate the probability that a
convex set containing the origin translated by −r is included in the typical Poisson-Voronoi
cell. As a function of r, A2(R[n]; r) is a convex function such that its gradient ∇rA2(R[n]; r)
is, to, up to a multiplicative constant, equal to (

∫ 2π

0 h(	; r) cos	d	,
∫ 2π

0 h(	; r) sin	d	).

The sum appearing in (3.1) is the discrete version of this gradient. Hence (3.1) amounts to
adopting as the ‘center’ of the cell the point for which the fundamental domain has minimum
area; we remark that this point is given by (π−1

∫ 2π

0 h(	) cos	d	,π−1
∫ 2π

0 h(	) sin	d	).
In the presence of constraint (3.1) the necessary mathematics requires a few preliminar-

ies. Let t = (tx, ty) be a translation applied to a Crofton cell. Under t the vertices Sm are
translated by just that amount. However, the Rm, being projections of the origin onto lines
that under the translation stay parallel to themselves, transform differently. If t keeps the
origin inside the cell, the Rm transform into Rm,t = (Rm,t,	m,t) given by

Rm,t = Rm + tx cos	m + ty sin	m,
(3.2)

	m,t = 	m.

We will write R[n]
t = {R1,t, . . . ,Rn,t}. It will be convenient to extend the definition (3.2)

of R[n]
t to translations t that take the origin out of the cell. In that case, however, R[n]

t is
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‘nonphysical’ (it does not represent a Crofton cell any more; one or more of its Rm,t are
negative) and, by virtue of (2.5), the indicator χ(R[n]

t ) then vanishes.
We now show that if R[n] defines a Crofton cell, then there exists a unique ‘centering

translation’ t∗(R[n]), that is, one for which (3.1) is satisfied:

R̂1,t∗ = 0. (3.3)

The proof goes by explicit construction: using (3.1) and (3.2) in (3.3) leads to a linear system
of equations for t∗ whose solution is

t∗(R[n]) = −1

2

√
2nϕ−1

(
R̂c

1

R̂s
1

)
, (3.4)

where for any complex variable z we set z = (zc + izs)/
√

2 and where ϕ is the matrix of
elements

ϕ11 =
∑

m

cos(2πm/n) cos	m, ϕ12 =
∑

m

cos(2πm/n) sin	m,

(3.5)
ϕ21 =

∑

m

sin(2πm/n) cos	m, ϕ22 =
∑

m

sin(2πm/n) sin	m.

Two useful relations,

t∗(R[n]
t ) = t∗(R[n]) − t, (3.6)

and
∫

R2
dtδ

(
t − t∗(R[n])

)
χ(R[n]

t ) = 1 (3.7)

will serve below.

3.2 Modified Starting Point for α = 1

After these preliminaries we return to the general expression (2.6) for the sidedness proba-
bility pn(α). For the case of the Crofton cell we insert (3.7) and rewrite pn(1) as

pn(1) = λn

n!
∫ 2π

0
d	1 . . .d	n

∫

R2
dt

∫ ∞

0
dR1 . . .dRn

× δ
(
t − t∗(R[n])

)
χ(R[n])χ(R[n]

t )e−P(R[n]), (3.8)

where we used that A1 = P and have indicated explicitly the dependence on R[n] of all
quantities involved.

Under the t integral in (3.8) we now transform from the Rm to new radial variables of
integration R′

m ≡ Rm,t, with the Rm,t given by (3.2). We may express R[n] in terms of R′ [n]

by means of R[n] = R′ [n]
−t . The Jacobian of this transformation is unity but the limits of

integration should be treated with some care. Equation (3.2) implies for R′
m the domain of

integration tx cos	m + ty sin	m < R′
m < ∞. If the lower limit of integration is negative,

we may replace it with zero because χ(R[n]
t ) = 0 on the interval discarded; and if the lower
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integration limit is positive, we may also replace it with zero, because then χ(R[n]) = 0 on
the interval added to the domain of integration. Hence, still using (3.6), we get

pn(1) = λn

n!
∫ 2π

0
d	1 . . .d	n

∫

R2
dt

∫ ∞

0
dR′

1 . . .dR′
n

× δ
(
t∗(R′ [n])

)
χ(R′ [n])χ(R′ [n]

−t )e−P(R′ [n]
−t ). (3.9)

Since the cell perimeter is invariant under translation, we have P(R′ [n]
−t ) = P(R′ [n]). The

only t dependence left in the integrand of (3.9) is then the one in χ(R′ [n]
−t ). The integral on

t of this quantity has a nonzero contribution only in a domain of the same size and shape
as the cell itself and therefore produces the cell area A(R′ [n]). Hence, still suppressing the
primes, we get from (3.9)

pn(1) = λn

n!
∫ 2π

0
d	1 . . .d	n

∫ ∞

0
dR1 . . .dRn

× δ
(
t∗(R[n])

)
χ(R[n])A(R[n])e−P(R[n]). (3.10)

Equation (3.10) constitutes a modified starting point for the calculation of the sidedness
probability pn(1) of the Crofton cell. It differs from the original expression (2.6) by the
insertion of a delta function and of the area factor A(R[n]).

3.3 Sidedness Probability pn(1) of the Crofton Cell

Having rewritten the definition of the sidedness probability pn(1) as (3.10), we are now in a
position to start its explicit evaluation. The cell area A is given by

A = R2
avAang, Aang = 1

2

n∑

m=1

ρ2
m(tanγm + tanβm+1), (3.11)

where Aang is an expression only in terms of the angular variables. We may similarly isolate
the radial part of the centering translation t� found in (3.4) by writing

t� = R2
avt�ang, (3.12)

where t�ang depends only on the angles.
When we substitute (3.11) and (3.12) in (3.10), the factors Rav stemming from δ(t�) and

from the area A cancel. We set P = 2πRav(1 + n−1V ), which is the special case α = 1
of (2.21); here 2πRav is the perimeter of a circular cell of radius Rav. We may in the same
way as before pass to the variables {ξm,ηm} and a single length scale Rav. Carrying out the
Rav integration we get, setting λ = 1 as before,

pn(1) = 1

n!
∫ 2π

0
d	1 . . .d	n

∫ ∞

0
dR1 . . .dRnδ(t∗ang)Aangχe−P

= 1

n

∫

ξ,η

G′(ξ, η;β∗)−1

[
n∏

m=1

ρα
mTmξ−1

m

]
�

∫ ∞

0
dRavR

n−1
av e−P

= (n − 1)!
n(2π)n

∫

ξ,η

�δ(t�ang)Aange−V(1), (3.13)
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which is an alternative for (2.22) when α = 1. We may rewrite (3.13) as

pn(1) = p(0)
n (1)〈�δ(t∗ang)Aange−V(1)〉, (3.14)

where p(0)
n (1) and V(1) are given by the same equations as before, namely (2.26) and (2.23)

with α = 1, and the angular brackets are defined by (2.25). When α = 1, expression (3.14) is
an alternative to (2.24). Both are exact representations of the initial expression for pn(1), but
(3.14) is required if the large-n expansion is to succeed. That will be the subject of Sect. 2.4.

3.4 Large-n Expansion of pn(1)

3.4.1 Preliminaries

We will perform the large-n expansion of the average appearing in (3.14). The expansion of
V(1) is not different from the general case and the result follows directly from (2.36)–(2.39)
by setting α = 1. As before, the indicator � will give corrections that are exponentially
small with n; we may therefore replace it with unity. The insertion Aang in (3.14), given
explicitly in (3.11), is expanded as

Aang = 1

2

n∑

m=1

[
γm + βm+1 +O(γ 3

m,β3
m+1)

]

= π +O(n− 1
2 ), (3.15)

which, to leading order, is the area of a disk of unit radius. We now investigate the factor
δ(t∗ang) for large n. In view of (3.12) and (3.4) this requires the asymptotic evaluation of
the matrix ϕ defined in (3.5). In the large-n limit the angle differences ξ
 = 	
 − 	
−1 are
independent random variables of average 2π/n. Hence after setting 	0 = 0 and summing
ξ
 on 
 from 1 to m we have 	m = 2πm/n +O(n− 1

2 ). By doing the sums in (3.5) one then
finds that ϕ is equal to 1

2n times the 2 × 2 unit matrix, up to corrections that vanish for

n → ∞. Setting R̂1 = Ravρ̂1 we have

δ(t∗ang) � 1

2
δ(ρ̂c

1)δ(ρ̂
s
1), (3.16)

where the symbol � indicates validity for n → ∞. In that limit we can express ρ̂1 in terms
of the X̂q and Ŷq by means of the relation [18]

ρ̂1 � n
1
2 (X̂1 − Ŷ1). (3.17)

Using (3.15)–(3.17) in (3.14) we find that

pn(1) � p(0)
n (1) × 1

2
πn〈δ(X̂c

1 − Ŷ c
1 )δ(X̂s

1 − Ŷ s
1 )e

−V1(1)〉, (3.18)

where V1(1) is given by (2.37) with α = 1 and 〈. . .〉 is the average with respect to the
Gaussian weight (2.41).
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3.4.2 The Gaussian Integrations

In (3.18) the integrations on the Fourier variables X̂q and Ŷq with q = ±1 may be carried
out in the same way as before and lead to

pn(1) � p(0)
n (1) × 1

2
πn

∞∏

q=2

(1 − q−2)−2

×〈δ(X̂c
1 − Ŷ c

1 )δ(X̂s
1 − Ŷ s

1 )e
−X̂1X̂−1+Ŷ1Ŷ−1〉, (3.19)

where the terms in the exponential represent the q = ±1 contribution to V1(1). The average
〈. . .〉 in (3.19) reads explicitly

〈. . .〉 = 1

2π2

∫
dX̂1dX̂−1dŶ1dŶ−1 . . . e−2X̂1X̂−1−Ŷ1Ŷ−1 , (3.20)

as follows from (2.41) when restricted to its q = ±1 Fourier components. When (3.20) and
(3.19) are combined, the terms Ŷ1Ŷ−1 in the exponents cancel and the average in (3.19) turns
out to be equal to 1/(3π). Without the delta function insertions in the angular brackets, these
final integrations on Ŷ±1 would have led to a divergence. The fact that they now remain finite
confirms the validity of our approach.

After combining everything and still using that
∏∞

q=2(1 − q−2) = 1
2 , we obtain the main

result of this section: the sidedness probability pn(1) of the Crofton cell is given by

pn(1) � 2

3
np(0)

n (1), n → ∞, (3.21)

with p(0)
n (1) given by (1.2). This is what was announced in Sect. 1.4 of the introduction.

4 The Typical Cell in a Poisson Line Tessellation

In this section we continue our study of the case α = 1, that is, the Poisson line tessellation.
But whereas in Sect. 3 we studied the Crofton cell (or zero-cell), we will now consider the
typical cell. The preceding results give rise to a corollary concerning the typical cell that can
be derived with little effort. Let p

typ
n (1) denote the sidedness probability of the typical cell

in the Poisson line tessellation. As was shown in detail by Calka [16], the expression for
p

typ
n (1) differs from (3.8) for pn(1) by the insertion in the integrand of the latter of an extra

factor 〈A〉typ/A(R[n]), where 〈A〉typ = 1/πλ2 is the average cell area [2] in the Poisson line
tessellation.

The extra 1/A(R[n]) cancels the A(R[n]) present in (3.10) and hence

ptyp
n (1) = λn−2

πn!
∫ 2π

0
d	1 . . .d	n

∫ ∞

0
dR1 . . .dRnδ

(
t∗(R[n])

)
χ(R[n])e−P(R[n]). (4.1)

In the limit n → ∞ this is easily evaluated by the methods of Sects. 3.3 and 3.4. The integral
on Rav now has an extra factor R−2

av in its integrand and as a consequence we get instead
of (3.14) the expression

ptyp
n (1) = 4π

(n − 1)(n − 2)
〈�δ(t∗ang)(1 + n−1V )−2e−V(1)〉, (4.2)
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where we have again set λ = 1. Equation (4.2) is still a fully exact expression for the sided-
ness of the typical cell. From here on, again, we have to resort to a large-n expansion. Since
(1 +n−1V )−2 = 1 +O(n−1), the average in (4.2) is to leading order in n identical to the one
in (3.14) except for the absence of the insertion Aang, which to leading order is equal to π .
Upon combining these considerations we get from (4.2)

ptyp
n (1) � 8

3
n−1p(0)

n (1), n → ∞. (4.3)

This is our final result, announced in Sect. 1.4, for the asymptotic sidedness probability of
the typical cell. Comparison of (3.21) and (4.3) shows that the zero-cell and the typical cell
sidedness probabilities have the ratio

pn(1)

p
typ
n (1)

� 1

4
n2 = πR2

c

〈A〉typ
, n → ∞, (4.4)

where πR2
c = n2/4π (see (2.28)) is the average area of an n-sided Crofton cell and 〈A〉typ =

1/π is the average typical-cell area. Equation (4.4) is heuristically obvious.

5 Properties Beyond pn

5.1 General

In this section we return to a general value of the parameter α. The analysis of Sects. 2 and 3
focused on finding the sidedness probability pn. It started from a weight functional for the
zero-cell expressed initially (in (2.4)) as χ exp(−Aα). In the course of the analysis we were
led to transform this functional into exp(−V1) where V1 is quadratic in the Fourier variables
X̂q and Ŷq , which in turn are Gaussian distributed according to (2.41). The transformation
is valid in the limit n → ∞ and the resulting weight exp(−V1) may be used to calculate
arbitrary averages of functionals of the cell perimeter, provided that sums and products on
the wavenumber q converge sufficiently rapidly. We will limit ourselves below to discussing
only one of these cell averages.

5.2 Fluctuations of Rm around Rav

Important information on the cell shape is contained in the root mean square deviation σR

of the vectors Rm from their average Rav. Straightforward calculation [18] yields for this
quantity the expression

σ 2
R ≡ n−1

n∑

m=1

〈(Rm − Rav)
2〉

� 2n−1R2
c

∞∑

q=1

q−4〈|X̂q − Ŷq |2〉, n → ∞. (5.1)

It only requires a Gaussian integration to find that for n → ∞

〈|X̂q − Ŷq |2〉 � 3

2
�−1

q (α), q = 2,3, . . . , α ≥ 1. (5.2)
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A special case is

〈|X̂1 − Ŷ1|2〉 �
{

3
2 �−1

1 (α), α > 1,

0, α = 1,
(5.3)

where the discontinuity at α = 1 is due to the centering condition that we applied in that
case. Substitution in (5.1) of (5.2) and (5.3), as well as of the explicit expression (2.28)
for Rc, shows that

σR �

⎧
⎪⎨

⎪⎩

c(α)n
1
α − 1

2 , α > 1,

c̄(1)n
1
2 , α = 1,

(5.4)

where the coefficients have the properties

c(α) � 1

2π(α − 1)
1
2

, α → 1,

(5.5)

c̄(1) = 3

2π2

∞∑

q=2

1

(q2 − 1)2
= 1

16

(
1 − 33

4π2

)
= 0.010256 . . . .

The divergence of c(α) as α → 1 is due to the divergence of the q = 1 term in the sum
in (5.1); it demonstrates once more the tendency of the center of the cell to become delocal-
ized from the origin in that limit. For α = 1 we obtain discontinuously the value of c̄(1) due
to our centering of the cell.

6 Conclusion and Final Remarks

We have determined the asymptotic large-n expansion of the sidedness probability pn(α) of
the zero-cell in a family of tessellations dependent on a parameter α. Special cases are the
typical Poisson-Voronoi cell (α = 2), and the Crofton cell (α = 1). The latter turned out to
be a singular point in the parameter range and required an extension of previously known
methods.

We end with a few remarks about further research to which this work opens the door.
The first remark concerns the parameter range 0 < α < 1. In this range the density ρ(R) and
the probability distribution P (R) defined in (2.3) are still integrable in the origin. However,
�1(α) is negative, which indicates a tendency for the origin to be away from the cell center
defined by (3.1). Exploring the range 0 < α < 1 further would definitely be of interest; it is
no longer certain that in that case, too, the zero-cell will tend to a circle in the large-n limit.

Secondly, the analytic method of this work points the way to a new Monte Carlo simula-
tion algorithm for the Crofton cell, similar to the one that was used [20] successfully for the
Voronoi cell, and capable of producing accurate pn values for all finite n.

Thirdly, one may consider sidedness correlations between distinct cells, whether neigh-
boring or separated by a larger distance. In the Voronoi case (α = 2), the correlation between
adjacent cells is commonly denoted mn and defined as the average sidedness of a cell given
that its neighbor is n-sided. To our knowledge, no one has yet attempted to determine the
analog of this quantity for the Poisson line tessellation.

We will leave these matters for the future.



Random Line Tessellations of the Plane: Statistical Properties 647

Acknowledgement The second author wishes to acknowledge the support of the French ANR Project
“mipomodim” No. ANR-05-BLAN-0017.

References

1. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, 2nd edn. Wiley, New York (2000)

2. Goudsmit, S.: Rev. Mod. Phys. 17, 321 (1945)
3. Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 901 (1964)
4. Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 1157 (1964)
5. Miles, R.E.: Adv. Math. 10, 256 (1973)
6. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
7. Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 11, 369 (1998)
8. Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 12, 301 (1999)
9. Goldman, A.: Ann. Probab. 26, 1727 (1998)

10. Hug, D., Reitzner, M., Schneider, R.: Adv. Appl. Probab. 36, 667 (2004)
11. Santaló, L.A.: Introduction to Integral Geometry. Hermann, Paris (1953). This formula expresses the

length of a planar curve in terms of its number of intersections with the set of straight lines in that plane
12. Tanner, J.C.: J. Appl. Probab. 20, 400 (1983)
13. Crain, I., Miles, R.E.: J. Stat. Comput. Simul. 4, 293 (1976)
14. George, E.I.: J. Appl. Probab. 24, 557 (1987)
15. Michel, J., Paroux, K.: Methodol. Comput. Appl. Probab. (2007). Available online
16. Calka, P.: Adv. Appl. Probab. 35, 551 (2003)
17. Hilhorst, H.J.: J. Stat. Mech. Exp. L02003 (2005)
18. Hilhorst, H.J.: J. Stat. Mech. Exp. P09005 (2005)
19. Hilhorst, H.J.: Eur. Phys. J. B (2008). Available online
20. Hilhorst, H.J.: J. Phys. A 40, 2615 (2007)
21. Hilhorst, H.J.: J. Phys. A 39, 7227 (2006)
22. Hug, D., Schneider, R.: Geom. Funct. Anal. 17, 156 (2007)
23. Møller, J.: Lectures on Random Voronoi Tessellations. Springer, Berlin (1994)
24. Miles, R.E.: Adv. Appl. Probab. 27, 397 (1995)
25. Calka, P., Schreiber, T.: Ann. Probab. 33, 1625 (2005)
26. Schneider, R.: Convex Bodies—the Brunn-Minkowski Theory. Cambridge University Press, Cambridge

(1993)
27. Miles, R.E., Maillardet, R.J.: J. Appl. Probab. 19 A, 97 (1982)
28. Calka, P.: Adv. Appl. Probab. 35, 863 (2003)
29. Brillinger, D.R.: Times Series Data Analysis and Theory. Holt, Rinehard and Winston, New York (1975)
30. Brillinger, D.R., Rosenblatt, M.: Spectral Analysis of Time Series. Wiley, New York (1967), p. 183


	Random Line Tessellations of the Plane:  Statistical Properties of Many-Sided Cells
	Abstract
	Introduction
	Poisson-Voronoi and Poisson Line Tessellations
	Cell Sidedness
	A Family of Tessellations
	Results

	A One-Parameter Family of Line Tessellations
	Sidedness Probability pn(alpha) of the Zero-Cell
	Expression for Aalpha
	Angular Variables
	Expression for the Indicator Function chi

	Transforming the Expression for pn(alpha)
	Scaling of the Average Radius Rav 
	Large-n Expansion of V(alpha)
	Scaling with n
	The Expansion

	Large-n Expansion of pn(alpha)

	The Crofton Cell: alpha=1
	Centering Condition
	Modified Starting Point for alpha=1
	Sidedness Probability pn(1) of the Crofton Cell
	Large-n Expansion of pn(1)
	Preliminaries
	The Gaussian Integrations


	The Typical Cell in a Poisson Line Tessellation
	Properties Beyond pn
	General
	Fluctuations of Rm around Rav

	Conclusion and Final Remarks
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


